Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.

Identifieur interne : 000210 ( Main/Exploration ); précédent : 000209; suivant : 000211

Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.

Auteurs : Véronique Cheynier [France] ; Gilles Comte ; Kevin M. Davies ; Vincenzo Lattanzio ; Stefan Martens

Source :

RBID : pubmed:23774057

Descripteurs français

English descriptors

Abstract

Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn.

DOI: 10.1016/j.plaphy.2013.05.009
PubMed: 23774057


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.</title>
<author>
<name sortKey="Cheynier, Veronique" sort="Cheynier, Veronique" uniqKey="Cheynier V" first="Véronique" last="Cheynier">Véronique Cheynier</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1, France. Electronic address: cheynier@supagro.inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Comte, Gilles" sort="Comte, Gilles" uniqKey="Comte G" first="Gilles" last="Comte">Gilles Comte</name>
</author>
<author>
<name sortKey="Davies, Kevin M" sort="Davies, Kevin M" uniqKey="Davies K" first="Kevin M" last="Davies">Kevin M. Davies</name>
</author>
<author>
<name sortKey="Lattanzio, Vincenzo" sort="Lattanzio, Vincenzo" uniqKey="Lattanzio V" first="Vincenzo" last="Lattanzio">Vincenzo Lattanzio</name>
</author>
<author>
<name sortKey="Martens, Stefan" sort="Martens, Stefan" uniqKey="Martens S" first="Stefan" last="Martens">Stefan Martens</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23774057</idno>
<idno type="pmid">23774057</idno>
<idno type="doi">10.1016/j.plaphy.2013.05.009</idno>
<idno type="wicri:Area/Main/Corpus">000213</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000213</idno>
<idno type="wicri:Area/Main/Curation">000213</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000213</idno>
<idno type="wicri:Area/Main/Exploration">000213</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.</title>
<author>
<name sortKey="Cheynier, Veronique" sort="Cheynier, Veronique" uniqKey="Cheynier V" first="Véronique" last="Cheynier">Véronique Cheynier</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1, France. Electronic address: cheynier@supagro.inra.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Comte, Gilles" sort="Comte, Gilles" uniqKey="Comte G" first="Gilles" last="Comte">Gilles Comte</name>
</author>
<author>
<name sortKey="Davies, Kevin M" sort="Davies, Kevin M" uniqKey="Davies K" first="Kevin M" last="Davies">Kevin M. Davies</name>
</author>
<author>
<name sortKey="Lattanzio, Vincenzo" sort="Lattanzio, Vincenzo" uniqKey="Lattanzio V" first="Vincenzo" last="Lattanzio">Vincenzo Lattanzio</name>
</author>
<author>
<name sortKey="Martens, Stefan" sort="Martens, Stefan" uniqKey="Martens S" first="Stefan" last="Martens">Stefan Martens</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology and biochemistry : PPB</title>
<idno type="eISSN">1873-2690</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyltransferases (genetics)</term>
<term>Acyltransferases (metabolism)</term>
<term>Anthocyanins (metabolism)</term>
<term>Phenols (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (enzymology)</term>
<term>Plants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acyltransferases (génétique)</term>
<term>Acyltransferases (métabolisme)</term>
<term>Anthocyanes (métabolisme)</term>
<term>Phénols (métabolisme)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acyltransferases</term>
<term>Anthocyanins</term>
<term>Phenols</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acyltransferases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acyltransferases</term>
<term>Anthocyanes</term>
<term>Phénols</term>
<term>Plantes</term>
<term>Protéines végétales</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23774057</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2690</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>72</Volume>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology and biochemistry : PPB</Title>
<ISOAbbreviation>Plant Physiol Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.</ArticleTitle>
<Pagination>
<MedlinePgn>1-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.plaphy.2013.05.009</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0981-9428(13)00174-5</ELocationID>
<Abstract>
<AbstractText>Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn. </AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier Masson SAS. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cheynier</LastName>
<ForeName>Véronique</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1, France. Electronic address: cheynier@supagro.inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Comte</LastName>
<ForeName>Gilles</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davies</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lattanzio</LastName>
<ForeName>Vincenzo</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martens</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Plant Physiol Biochem</MedlineTA>
<NlmUniqueID>9882449</NlmUniqueID>
<ISSNLinking>0981-9428</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000872">Anthocyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.-</RegistryNumber>
<NameOfSubstance UI="D000217">Acyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000217" MajorTopicYN="N">Acyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000872" MajorTopicYN="N">Anthocyanins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acyltransferase</Keyword>
<Keyword MajorTopicYN="N">Biosynthesis regulation</Keyword>
<Keyword MajorTopicYN="N">Glycosyltransferases</Keyword>
<Keyword MajorTopicYN="N">Plant phenolics as underground and aboveground signaling molecules</Keyword>
<Keyword MajorTopicYN="N">Plant phenolics definition and classification</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23774057</ArticleId>
<ArticleId IdType="pii">S0981-9428(13)00174-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.plaphy.2013.05.009</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Montpellier</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Comte, Gilles" sort="Comte, Gilles" uniqKey="Comte G" first="Gilles" last="Comte">Gilles Comte</name>
<name sortKey="Davies, Kevin M" sort="Davies, Kevin M" uniqKey="Davies K" first="Kevin M" last="Davies">Kevin M. Davies</name>
<name sortKey="Lattanzio, Vincenzo" sort="Lattanzio, Vincenzo" uniqKey="Lattanzio V" first="Vincenzo" last="Lattanzio">Vincenzo Lattanzio</name>
<name sortKey="Martens, Stefan" sort="Martens, Stefan" uniqKey="Martens S" first="Stefan" last="Martens">Stefan Martens</name>
</noCountry>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Cheynier, Veronique" sort="Cheynier, Veronique" uniqKey="Cheynier V" first="Véronique" last="Cheynier">Véronique Cheynier</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000210 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000210 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23774057
   |texte=   Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23774057" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020